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Abstract

Those designing autonomous systems that interact with humans will
invariably face questions about how humans think and make decisions.
Fortunately, computational cognitive science offers insight into human
decision-making using tools that will be familiar to those with backgrounds
in optimization and control (e.g., probability theory, statistical machine
learning, and reinforcement learning). Here, we review some of this work,
focusing on how cognitive science can provide forward models of human
decision-making and inverse models of how humans think about others’
decision-making. We highlight relevant recent developments, including
approaches that synthesize black box and theory-driven modeling, accounts
that recast heuristics and biases as forms of bounded optimality, and
models that characterize human theory of mind and communication in
decision-theoretic terms. In doing so, we aim to provide readers with a
glimpse of the range of frameworks, methodologies, and actionable insights
that lie at the intersection of cognitive science and control research.

13.1

, .•
·�-

Review in Advance first posted on 
November 16, 2021. (Changes may 
still occur before final publication.)

A
nn

u.
 R

ev
. C

on
tr

ol
 R

ob
ot

. A
ut

on
. S

ys
t. 

20
22

.5
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

Pr
in

ce
to

n 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

02
/0

9/
22

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 

mailto:tomg@princeton.edu
https://doi.org/10.1146/annurev-control-042920-015547


AS05CH13_Griffiths ARjats.cls November 5, 2021 15:16

1. INTRODUCTION

As robots and other automated systems are beginning to become more integrated into human
lives, engineers face a new problem: designing these systems to effectively and safely interact with
people. Part of the challenge is that humans are themselves autonomous agents, making decisions
and acting in ways that introduce potentially unpredictable dynamics into the environment. Even
more challenging, humans change their behavior in response to the actions of the system they
are interacting with, meaning that the engineer has to consider not just how to predict and inter-
pret human behavior, but also how the behavior of the system that they are designing might be
predicted and interpreted by humans in turn.

As cognitive scientists, we have had many enjoyable conversations with engineers about how
to solve these problems. Typically these conversations begin with an email or a knock on the
door requesting the most up-to-date model of human behavior in a format that can be easily
integrated into a control-theoretic framework.We disappoint our colleagues by telling them that
unfortunately no such model exists, but then excite them with how much progress has been made
toward this goal and all of the research possibilities that this entails. Our intent in this article is
to offer our readers a chance to follow the same emotional trajectory, highlighting the ways in
which we think contemporary cognitive science can provide tools that may be useful to engineers
designing systems that interact with humans and identifying some of the exciting possibilities for
future research in this area.

Speaking broadly, computational models developed by cognitive scientists offer solutions to at
least two of the problems that engineers face (Figure 1). First, they provide forward models that
can be used to generate predictions about human behavior based on assumptions about the beliefs,
goals, and desires of human agents. These models can be useful for anticipating what a person will
do in a given situation and hence provide a way to enrich the modeling of the environment in
which an automated system operates. These forward models can also be used as an ingredient
in inverse models, which infer the beliefs, goals, and desires of humans based on their actions—
a necessary step for any agents that seek to coordinate their behavior with humans, collaborate
effectively, provide assistance, or cooperate as they pursue common goals.

Beliefs

Desires

Habits

Heuristics

Emotions

Values

Attention

Planning

Biases

Decisions

Inverse models
(inference)

Forward models
(prediction)

Figure 1

Forward and inverse models from cognitive science. In this article, we review work in cognitive science on
forward models of how humans make decisions and inverse models that humans use to reason about other
agents. Cognitive scientists are increasingly using computational tools such as probability theory,
reinforcement learning, and statistical machine learning to characterize forward and inverse models of
human decision-making. This provides opportunities for cross-talk and collaboration between cognitive
science and control research.
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Cognitive science also offers insight into the way that humans solve exactly this inverse prob-
lem. People routinely make inferences about the beliefs, goals, and desires of other people, a
process that has been extensively studied by psychologists (1–3) and is increasingly captured in
computational models (4–6). These models are useful not only as a source of insight for engineers
seeking to re-create this capacity to draw inferences from the actions of others, but also as a tool
for anticipating how the actions of an automated system will be interpreted by a human (7, 8).
Research in human–robot interaction has begun to make use of these ideas, designing systems
that act in a way that is more legible to humans (9–11), a line of work that we also review.

In considering these two ways that computational models of cognition can be used by engi-
neers designing automated systems—as both forward and inverse models—we also highlight the
ways in which recent work in computational cognitive science has emphasized formalisms that
will be very familiar to researchers coming from a background of optimization and control. Cog-
nitive scientists increasingly use ideas from probability theory, statistical machine learning, and
reinforcement learning in specifying models of human cognition (12). This creates an opportu-
nity to develop a common language for describing the behavior of both humans and machines,
and supports easier integration of insights from cognitive science into control.

Given the vast scope of human behavior, it is necessary to limit our review to a specific sub-
domain of human activity. To that end, we focus on models of human decision-making, broadly
construed. The decisions people make reveal their preferences and determine their actions, which
is key to the design of interactive systems. They also provide a rich territory for researchers, with
formal models of human decision-making going back almost 300 years (13). Our goal is to sum-
marize the current state of the art in predicting and interpreting human decisions in a form that
is immediately actionable by designers of automated systems.

The remainder of the article is split into two parts. In the first part, we focus on forwardmodels,
considering the criteria for useful computational models of human decision-making and summa-
rizing recent research that aims to satisfy these criteria.We then turn to inverse models, describing
the problem of inverse inference, summarizing the key ideas from the psychological literature, ex-
plaining how this has been translated into formal models, and highlighting some of the ways in
which these ideas have been applied within robotics. We close with a brief discussion of some of
the remaining open questions in these areas and possibilities for future research.

2. FORWARD MODELS OF HUMAN DECISION-MAKING

For a theory of human decision-making to be useful to an engineer designing a system that has
human behavior as a component, that theory should have two properties: It should be generaliz-
able, meaning that it can be applied in any context in which the engineer needs to be able to make
predictions about how people will act, and it should be accurate, producing good predictions
about human behavior in that context. The development of theories of human decision-making
has historically tended to alternate between these criteria, making progress on one at the cost of
the other (Figure 2).

The earliest formal theories of human decision-making made the strong assumption that hu-
mans are rational, in the sense of pursuing actions that are in their self-interest and in compliance
with axioms that can be widely agreed to characterize rational behavior (19, 20). The impressive
result of this investigation is that the preferences of a rational agent can be characterized by a util-
ity function that assigns a numerical value to each possible outcome, and when faced with decisions
that involve uncertainty, that agent should pursue the option that has the highest expected utility.

This theory—which we refer to as expected utility theory—fulfills the goal of generalizability.
To predict the actions that a rational agent will take in a new environment, it is necessary only
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a* = arg
a
max E[u | a]

π* = arg
π
max  E[u | π] – cost(π)

Anchoring and

adjustmentAvailability bias

Confirmation bias

Framing effects

Prospect

theory

Planning fallacy
a b

dc

Figure 2

Four approaches to studying
human decision-making. (a) Early formal theories of decision-making assumed humans were expected
utility maximizers. (b) The heuristics and biases research program initiated in the 1970s by Tversky &
Kahneman (14) demonstrated that people systematically violate basic predictions of expected utility theory.
This resulted in a focus on the heuristics that people tend to use in specific situations as opposed to general
theories. (c) Decision-making models represented by neural networks, combined with large data sets of
human choice behavior and informed by psychological theory (e.g., 15, 16), provide a way to make predictions
about human decisions (see Section 2.1). (d) The theoretical framework of resource rationality (17, 18) aims to
provide a general formal theory that accounts for people’s heuristics and biases. Specifically, resource rationality
proposes that human decision-making reflects expected utility maximization subject to computational
costs and cognitive limitations (see Section 2.2). Emojis designed by OpenMoji, the open source emoji
and icon project, and used under a CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0).

to identify the utility assigned to different outcomes; the decisions that agent will take can then
be derived directly from these quantities. The tools that are used for deriving this behavior are
exactly the tools that are used in optimization and control, as we typically seek to define agents that
are rational. As a consequence, human rationality is a common assumption in interactive systems,
albeit with some allowance for stochasticity (e.g., 21). It is also a common assumption in the kind
of choice models that are widely used in econometrics (e.g., 22).

The only problem with assuming that humans are rational is that this assumption turns out
to be false. Starting in the 1970s, psychologists (led by Daniel Kahneman and Amos Tversky)
began to document the ways in which people’s decisions violate the axioms that are assumed in
rational models (14). This led to a swing toward a more qualitative psychology of human decision-
making, which emphasized identifying all of the heuristic shortcuts that people seem to use when
making decisions, and the behavioral biases that result. The outcome of this process is a long list
of the things that people do wrong in specific situations. This is something that might potentially
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increase the accuracy of our models, but since these behaviors are specific to particular scenarios
and it is hard to know which heuristic might dominate in a new setting, this accuracy comes at the
cost of generalizability.

This qualitative approach to understanding human decision-making was complemented
by efforts to formalize the cognitive processes that people engage in when making decisions.
Kahneman and Tversky developed prospect theory, which extends expected utility theory by
allowing different functions characterizing the subjective value of gains and losses and recog-
nizing that the probabilities of events may also be subjectively transformed (23). Subsequent
work has introduced further nuances to this theory (e.g., 24), together with hypotheses for how
to formalize ideas about different heuristics that people might follow (e.g., 25) as well as other
cognitive factors, such as the salience of different options (e.g., 26).

Recent work in psychology and neuroscience has drilled down even further into the cognitive
processes that might account for these behaviors. One prominent line of work focuses on the idea
that peoplemake decisions by accumulating evidence that one option is better than the alternatives
(27).There is ongoing debate about the precise mechanisms by which such a process could operate
(e.g., 28), but these accumulator models have also received support from results in neuroscience
that seemed to show areas in the brain that engage in evidence accumulation (e.g., 29, but see 30).

For the engineer, the precise cognitive and neural mechanisms underlying people’s decisions
might matter less than what those decisions actually are and how good predictions about human
decision-making can be generated in other contexts—our two criteria of accuracy and generaliz-
ability. To this end, we focus on two recent developments that increase the potential for models
of human decision-making to be used effectively as forward models in control settings. The first
is the potential to use ideas from machine learning, combined with the availability of large data
sets on human behavior, to develop more accurate models of human decision-making. The sec-
ond is recent efforts to revisit the notion of rationality, with the goal of obtaining a theoretical
framework that has the same generalizability as expected utility theory while incorporating what
we know about human cognitive limitations in a way that supports greater accuracy.

2.1. Developing More Accurate Models of Human Decisions
Using Machine Learning

The recent success of machine learning in many domains raises the possibility that such systems
may be able to better predict human decisions than the theories of choice developed by psychol-
ogists and economists. For the engineer seeking a forward model of human decision-making,
it may be tempting to collect a data set of human decisions and train an off-the-shelf machine
learning method to predict people’s behavior. This possibility has been explored extensively over
the last decade, showing that machine learning has a great deal of promise in this area, but also
that the performance of these systems can be significantly improved by the injection of some
psychological insight.

A first extensive comparison of psychological models against machine learning systems for
predicting human decisions occurred in the 2015 Choice Prediction Competition (31). The com-
petition employed a standard risky-choice paradigm that has been used extensively to study hu-
man decisions, informing the development of many of the models summarized above. In this task,
participants make a choice between two gambles. In each gamble, different outcomes—here cor-
responding to actual monetary gains and losses—occur with different probabilities. The pairs of
gambles can be described by an 11-dimensional vector that summarizes the payoffs and their prob-
abilities. The task is to map this 11-dimensional vector to a probability of choosing one gamble
over the other, with the goal of getting this probability as close as possible to the choice proba-
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bilities of a group of human participants. In the competition, the choice probabilities for 90 such
pairs of gambles were provided, and the goal was to predict the corresponding probabilities for a
held-out test set.

The results of the 2015 Choice Prediction Competition showed that psychological models—
that is, those developed by psychologists and economists—tended to outperform off-the-shelf
machine learning methods. The best-performing model instantiated a set of heuristics that had
been identified in the psychological literature. Subsequent work showed that machine learning
methods could improve on this performance, but only when provided with features that were
motivated by psychological theory (32, 33).

Tomachine learning practitioners, these results may not come as a big surprise.This prediction
problem has a relatively large number of features compared with the amount of available data (90
pairs of gambles). The success of psychological models can be interpreted as an instance of the
bias–variance trade-off (34), with the small amounts of data involved meaning that models with
carefully crafted inductive biases are most likely be successful. However, the other side of that
trade-off is the expectation that as the amount of data increases, we should expect to see improved
performance from machine learning models with weaker inductive biases.

Consistent with this hypothesis, applications of machine learning to predicting other kinds of
human decisions have shown greater success.With more instances of more constrained problems,
machine learning methods can outperform psychological models, and it has even been suggested
that they offer an upper bound on the amount of variance we can expect to account for (35, 36).
Indeed, in a subsequent Choice Prediction Competition where models were trained on 210 pairs
of gambles, relatively generic machine learning models were able to outperform psychological
theories (37).

Based on this insight, recent work has collected and analyzed a risky-choice data set that in-
volves orders of magnitude more problems than the original Choice Prediction Competition (15,
38). In this data set, human participants made decisions for more than 10,000 pairs of gambles.
The size of the data set makes it possible to systematically evaluate existing models of choice and
to use machine learning to exhaustively explore the space of possible theories. Different models
of choice can be expressed in terms of constraints on the functional form of a predictive model.
For example, under the expected utility theory, we can take the probability that people choose
a gamble to be proportional to exp {

∑
ipiu(xi)}, where pi is the probability of the outcome xi and

u(·) is a utility function. By taking an arbitrary differentiable form for this utility function—such
as an artificial neural network—we can employ standard tools for automatic differentiation to use
gradient descent in order to optimize the form of this function against human data. This approach
generalizes to other psychological theories. For example, prospect theory corresponds to assum-
ing that the choice probability is proportional to exp {

∑
iπ (pi)u(xi)}, where π (·) is a probability

weighting function.
Peterson et al. (15) used this approach to identify the optimal functional form for various clas-

sic theories of choice, and also evaluated unconstrained artificial neural networks for predicting
people’s decisions (see Figure 3). The results showed that when using the entire data set of dif-
ferent pairs of gambles, an unconstrained neural network systematically outperformed all existing
psychological theories.However, they also showed that equivalent performance could be obtained
by defining a model based on a mixture of these classic theories, and that this model achieved a
high level of predictive performance far faster than an unconstrained neural network. The results
of this analysis suggest that, given enough data, we can obtain better forward models of human
decisions using machine learning, but also that these models are likely to be enhanced by drawing
on psychological theory when possible.
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Figure 3

Performance of machine learning models predicting people’s decisions in a risky-choice task. Neural
networks constrained to a functional form consistent with classic theories of decision-making, such as
expected utility, prospect theory, and cumulative prospect theory, are compared against networks that
directly estimate the value of a gamble from its features (value based) or directly predict people’s choices
based on the features of both gambles (context dependent). The vertical axis shows the mean squared error
in predicting the probability with which people choose a particular gamble, and the horizontal axis shows the
percentage of the training data (approximately 10,000 pairs of gambles) that was used. The previous largest
data set for risky choice (37) is also shown. Given enough data, all neural network models outperform the
best models in their class proposed by human psychologists and economists, but this requires orders of
magnitude more data than have previously been collected. For comparison, the dotted line shows the
performance of the Best Estimate and Sampling Tools (BEAST) model (31), which won the 2015 Choice
Prediction Competition. Data are from Reference 15.

A further challenge of using off-the-shelf machine learning methods when developing for-
ward models of human decision-making is that these methods often result in models that are
uninterpretable. Previous work in this area has relied on post hoc analysis of models to identify
features that are psychologically interpretable (e.g., 36). Agrawal et al. (16) recently outlined
an alternative approach that uses an off-the-shelf machine learning model to critique a more
interpretable model until that interpretable model yields similar performance. This approach
was applied to a large data set of human decisions that is likely to be of interest to researchers
working on autonomous systems: the Moral Machine project (39). This data set consists of more
than 10 million human decisions about what an autonomous vehicle should do when faced with
an inevitable collision, where the only available choice is about which group of pedestrians the
vehicle will collide with—a version of the classic trolley problem (40). Having an uninterpretable
model that predicts these choices is not particularly useful for designing autonomous systems,
but Agrawal et al. (16) showed that their approach can be used to identify the features that a
predictive model had discovered, making those features explicit in a way that is likely to be useful
when deciding how to design and regulate autonomous vehicles.

2.2. Developing More Generalizable Models via Resource Rationality

Despite the promise of machine learning to improve the accuracy of models of human decisions,
generalizability is still likely to be a challenge. Machine learning systems are typically trained in a
specific domain and can face difficulty when applied in another related domain. Making this kind
of generalization requires extracting the causal principles that underlie people’s decisions. In this
section, we consider an approach that has the potential to do just that.
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The classical notion of rationality was our prime example of a theory that satisfies the goal
of generalizability—for any new situation, it is possible to derive predictions about behavior.
However, this classical theory falls short not just because it fails to empirically capture aspects of
how people make decisions, but also because it represents an unrealistic ideal for any intelligent
system with finite computational resources. This is a long-standing idea, going all the way back
to the classic work of Herbert Simon (41) on bounded rationality. However, this idea has recently
begun to receive a more comprehensive mathematical and empirical treatment.

The classical theory of rational action via maximizing expected utility does not take into ac-
count the computational cost of selecting that action. As a consequence, it is easy to imagine an
agent that is trying to follow the prescriptions of this theory ending up paralyzed as it tries to
compute all of the possible outcomes and their probabilities. To address this, researchers in the
artificial intelligence literature have sought a more realistic criterion for rational action for agents
with finite computational resources. The outcome of this investigation is the theory of bounded
optimality, which focuses not on the optimal action that an agent should take but rather on the
optimal algorithm an agent should follow in order to select that action (42, 43).This theory explic-
itly trades off the expected utility of finally taking an action with the computational cost involved
in getting to that point.

For cognitive scientists, bounded optimality offers a way to theorize about the optimal cog-
nitive processes that intelligent agents should engage in when trying to make a decision (44, 45).
Because it emphasizes rational use of the cognitive resources an agent is able to apply, this approach
has been referred to as resource-rational analysis (17, 18). Considering how an agent should ra-
tionally deploy its cognitive resources provides a way to explain why people may choose to adopt
particular heuristics—even if those heuristics result in systematic biases—and to make generaliz-
able predictions about the kinds of cognitive strategies that we expect people to engage in.

Recent research has recast some of the classic heuristics discovered by psychologists from the
perspective of the rational use of cognitive resources. For example, focusing on extreme events
when considering the outcomes of a decision is a strategy that can minimize the variance of esti-
mates of expected utility based on small samples, even though it introduces a bias to those estimates
(46). Thinking in these terms allows us to potentially begin to reconcile the various heuristics and
biases identified by psychologists into a broader mathematical theory.

To the engineer, resource rationality offers the potential to make better predictions about hu-
man behavior in a way that incorporates realistic assumptions about the cognitive limitations of
human agents. Generalizability results from the fact that deriving an optimal resource-rational
strategy can be formulated as a sequential decision problem. An agent trying to make a decision is
going to execute the sequence of computations that provide information about the possible out-
comes of their actions, at some point selecting an action to perform based on this information.The
sequential decision problem here corresponds to the choice of that sequence of computations:We
can construe each computation as a kind of mental action, ending with the decision that we have
done enough computation and are ready to act as the end of the sequence.

Expressed in these terms, it is possible to see that we can use familiar tools such as Markov
decision processes (MDPs) to formalize the internal decision-making we do about how to deploy
our cognitive resources. Solving the resulting MDPs—referred to as meta-level MDPs (47)—
provides a way to derive predictions about behavior. Crucially, this approach carries with it the
same generality as the classic theory of rational action. It simply moves rationality up the level of
the choice of how to deploy cognitive resources and requires us to be explicit about what those
resources might be.

To provide a concrete example, one recent paper (48) used this approach to examine how to
model attention allocation in a simple decision-making task. In this task, people are presented with
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three objects—in this case, snack foods—and asked to decide which they prefer. While they are
doing this, their gaze it recorded using an eye tracker. People show a consistent pattern of behavior
in this task. For example, they spendmore time looking at items that they assign a higher subjective
value. These patterns of behavior can be explained by assuming that people are trying to estimate
the subjective value of each item, and that each moment they spend looking at an option provides
a sample from a Gaussian distribution centered on that value. The problem of deciding whether
to sample can then be formulated as an MDP, and the resulting policy generates predictions
about which objects people look at and in what sequence. We spend more time looking at items
with higher subjective value because those are the items that are most relevant to our ultimate
decision.

Describing cognitive processes in terms of the solutions to MDPs has the virtue of charac-
terizing human cognition using formal tools that are likely to be familiar to those working in
control theory. Other work on resource rationality has likewise employed formalisms that will be
familiar to engineers. For example, one line of work focuses on the information-theoretic costs of
maintaining mental representations at a given degree of precision (49, 50). This approach also has
connections with work in economics that explains apparently irrational aspects of human choice
in terms of rational inattention, where information-theoretic costs are assumed to apply to the
precision of the signal an agent uses to inform a decision (51, 52).

Resource rationality offers a new set of tools for capturing human behavior with greater preci-
sion in a way that is compatible with standard modeling techniques used in robotics and control.
Being able tomake generalizable predictions about how long it will take people tomake a decision,
what information they are going to seek whenmaking that decision, and what kinds of information
they are likely not to include when making a decision can facilitate the design of human–machine
interfaces. Furthermore, it is possible to use this kind of approach to engage with the question
of how to improve human decision-making: If we assume that people are rational but resource
limited, we can think about how assistive robots might modify the environments in which humans
are making decisions to allow them to make better use of those resources.

3. INVERSE MODELS OF HUMAN DECISION-MAKING

While forward models can help us to make predictions about what people will do given their
preferences, this is typically not all we need to know in order to design systems that are able to
interact effectively with humans. In an ideal world, autonomous systems would effectively help
fulfill people’s needs and desires, which can change from person to person and situation to situ-
ation. We need a way to infer those needs and desires from people’s behavior—inverse models.
Furthermore, people are adaptive; they often change their behavior in response to a system based
on their best guess as to how it functions and may even expect the system to do the same. So it
is not enough to be able to make inferences about people’s needs and desires; we also need to
anticipate the inferences that people will be making in turn.

Developing systems that can solve these problems is a daunting challenge, but fortunately,
we can take inspiration from existing systems that must regularly interact with humans: other
humans. And while nearly everyone has had to deal with other humans, cognitive science offers
an extensive, systematic understanding of how we effectively solve the problem of understanding
and interacting with others in our everyday lives.

In this section, we turn our focus toward what cognitive science has to say about people’s in-
verse models of cognition and action. One of the most remarkable capacities that humans have
is the ability to understand the hidden mental states that give rise to other people’s observable
behavior (3, 53). This ability is often referred to as theory of mind, and cognitive scientists have
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studied it in adults (3), children (54), infants (55), and even other species (1). Theory of mind has
played a key role in our evolution as a social species capable of large-scale culture, coordination,
and cooperation, and its development within the first year of life is a major milestone that enables
us to comprehend and participate in the social world (2).

One exciting development in the recent study of theory of mind has been the application of
ideas from economics, artificial intelligence, and control theory to characterizing mental state
inference in computational terms. These approaches are reminiscent of methods familiar to en-
gineers, such as imitation learning, inverse reinforcement learning, and apprenticeship learning
(56–58).However, in modeling the varieties of human social inference and interaction, they depart
from and extend these ideas in numerous ways. This presents an exciting opportunity for collab-
oration between the cognitive sciences and engineering by providing new perspectives on inverse
decision-making but in a shared conceptual and technical framework.

Here, we focus on two lines of research on inverse models at the intersection of artificial in-
telligence and cognitive science. The first is work on cataloging and systematizing the conceptual
primitives involved in mental state inference—for example, how people reason about mental en-
tities like beliefs, desires, intentions, emotions, and so on. The second is work on inverse models
in the context of teaching and communication, which are among the most basic types of social in-
teractions that also expose the complexity of how humans use theory of mind productively. Along
the way, we discuss cases in which ideas from cognitive science have already been applied to the
design of automated systems, limitations of existing approaches, and the possibilities for future
research and applications.

3.1. Identifying the Building Blocks of Theory of Mind

Put in simple computational terms, theory of mind is an inference problem. That is, given limited
observations of a process (e.g., a person’s behavior), the task is to identify the hidden variables
that produced those observations (e.g., the person’s thoughts, desires, or feelings). Of course, this
requires having not only concepts like thoughts and desires but also an understanding of how
these elements combine to produce behavior. This can be understood in rough analogy to another
machine learning problem: parsing natural language. For example, inferring the parse tree of a
particular sentence is jointly constrained by knowledge of primitive types of words (e.g., nouns,
verbs, and prepositions) and a grammar of how words tend to be combined. Recent models of
theory of mind can be understood in terms of this linguistic metaphor: To explain how humans
parse the behavior of other agents, we must understand the mental state primitives and mental
state grammars that dictate how they are combined.

Incidentally, we have already covered one possible theory of how people parse behavior: ex-
pected utility theory (19, 20). Taken as a generative model of people’s intentional action, expected
utility theory posits that others have beliefs about the state of the world (e.g., the belief that there
is a burger joint down the street) and desires that certain states of the world be realized (e.g., the
desire to eat a burger for lunch) and that people act rationally to realize their desires given their be-
liefs (e.g., the act of walking down the street to the burger joint). As an account of theory of mind,
inverse expected utility theory makes several generalizable predictions that have been confirmed
with human experiments. For example, adults, children, and infants can reason about how others
integrate information about goals and action costs (4, 59, 60), features of different choices (61), the
statistics of the environment (5), and limited perception of the environment (62). Findings such
as these have led to the proposal that human common sense psychology consists of a naive utility
calculus where we abstractly reason about other decision-makers as utility-maximizing agents (6).
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At a broad level, the formal tools used characterize inverse utility theory will be familiar to
those from a control background, as they build on standard formalisms such as MDPs, partially
observable MDPs (POMDPs), and inverse reinforcement learning (63). However, there are
interesting differences between how they are applied as models of human inference and their
typical engineering applications. For example, cognitive models tend to assume that people have
highly structured representations of others’ mental states (e.g., discrete objects), whereas in
engineering applications the state representations are less structured [e.g., weights on a vector of
continuous features (58)]. This reflects the fact that cognitive scientists aim to explain how people
can rapidly draw inferences based on only a few observations and a large base of background
knowledge, while engineers are often trying to analyze large data sets of expert trajectories with
minimal fine-tuning. As a result, cognitive scientists tend to use Bayesian methods, while engi-
neers are likely to be more familiar with methods designed to scale to large data sets. An important
direction for future work is developing methods that cut across these different research agendas
and can replicate the sophistication of human theory of mind with tractable implementations.

Expected utility theory captures an important dimension of how humans parse others’ behav-
ior in terms of beliefs, desires, and intentions. But psychologists have also long studied other types
of mental states that people reason about, such as emotions, habits, norms, rules, values, and social
affinities, to name only a few (3).While the traditional frameworks of expected utility and inverse
reinforcement learning have not typically focused on these kinds of mental states, cognitive sci-
entists have made great strides in extending the formalism to study these types of representations.
For example, inverse planning models have been combined with models of habits (64), emotion
and appraisal (65–67), responsibility judgments (68), values and norms in moral dilemmas (69),
and social groups (70, 71). Although we do not typically think of robots as having these types of
internal states, systems that are expected to interact with humans invariably need a basic under-
standing of the complete repertoire of psychological states that affect our individual and collective
behavior.

The models described so far generally rely on assuming the standard formulation of rational
action as optimizing a utility function defined over states of anMDP.For instance, they can express
the idea of reaching a goal state while attempting to minimize costs along the way, but they cannot
generally express history-dependent or temporally specified constraints, such as going to a goal
state only after accomplishing a subgoal. Recent work in both cognitive science and computer
science has attempted to remedy this by introducing more flexible logics to express an agent’s
utilities, including linear temporal logic (72–74), finite state machines (75), and simple programs
composed of subprocesses (76). These methods are powerful because they can express rational
cognition and action in a rich, compositional manner that may reflect human intuitions about
agency. At the same time, this expressiveness comes at the cost of more complex and costly infer-
ence, and identifying appropriate constraints and settings in which tractable inference methods
can be applied is an active area of research.

A complementary method for sidestepping strong assumptions about the structure of rational
action is to try to learn a theory of mind directly from data without recourse to predefined
structural priors (e.g., using a neural network). Rabinowitz et al. (77) took this approach by
generating a large data set of behaviors from synthetic agents with different goals, utilities, and
perceptual abilities, and then using meta-learning to train networks with no prior conception of
theory of mind or rationality to predict features of future behavior. Their networks were able
to acquire a low-dimensional embedding of behaviors and agent types capable of re-creating
several qualitative findings associated with theory of mind, such as inferences about goals, costs,
perceptions, and, to a certain extent, false beliefs. This work is an important demonstration of
how relatively standard machine learning methods can learn theory of mind–like representations
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given enough data and computation. However, studies by Nematzadeh et al. (78) have indicated
that standard neural networks are limited in their capacity to explicitly represent false beliefs
because they do not distinguish between appearance and reality, which psychologists consider to
be a defining feature of theory of mind (54). This suggests that some structural priors about the
nature of rational action are likely needed to capture the conceptual primitives and grammar that
constitute human theory of mind.

3.2. Identifying Generalizable Principles of Communication and Teaching

The previous section focused on theory of mind as a pure inference problem, but theory of mind
also influences how people act and interact. Building on ideas originally explored by philoso-
phers (79–81), developmental psychologists and linguists have extensively studied the principles
underlying how people use theory of mind to learn from others and communicate (2, 82, 83). A
key idea is that when people communicate (by saying words, making gestures, providing exam-
ples, etc.), they do so with communicative goals like modifying the receiver’s mental state or future
actions. The person receiving these communicative signals can then reason about these goals to
flexibly and efficiently draw inferences about what the sender meant to convey. Note that this
process requires both the receiver and sender to have a capacity for theory of mind and, more
specifically, a capacity for recursive theory of mind, in which one agent reasons about another
agent reasoning about the original agent (and potentially up to higher levels of recursion). Com-
putational research over the past few years has formalized and extended many of these findings
within the framework of probabilistic inference and decision-making (84, 85). Here, we provide a
broad overview of these developments.

One approach to studying communication in computational terms is the Bayesian pedagogy
and cooperative communication framework (84, 86, 87), which characterizes how a teacher who
presents data and a learner who interprets data should coordinate to communicate efficiently and
successfully.To illustrate this idea, suppose youwanted to teach someone the concept of even num-
bers by giving them a series of examples. Some examples will be better than others—for instance,
{2, 2, 2} is technically a sequence of even numbers, but it is not very informative, whereas {2, 4, 6}
is clearly more helpful. Additionally, if the person receiving these examples knows you are being
helpful, they can draw even stronger inferences based on what they are shown. Bayesian pedagogy
models formalize this intuition about helpful, informative examples in terms of recursively defined
teacher–learner equations, whose fixed points are optimal teacher–learner communication proto-
cols. This approach has been successful in characterizing how both adults and children teach and
learn concepts during pedagogical interactions (88, 89). Additionally, recent theoretical work has
established a direct correspondence between optimal transport problems and the equations that
characterize teacher–learner fixed points (90, 91). This opens the door for algorithmic insights to
be shared between engineering disciplines, such as operations research and the study of optimal
cooperative communication in humans.

Cooperative communication models capture settings in which a teacher has a sole, explicit goal
of being helpful and informative. However, communication is not always so clear-cut, and cog-
nitive scientists are modeling more complex communicative situations within the rational speech
act (RSA) framework (85). For example, people may have goals other than being informative, like
being succinct or inoffensive, and they may expect others to perform joint inference over these
noncommunicative goals. This process can give rise to linguistic phenomena as varied as hyper-
bole [“This kettle cost $1,000!” (92)] and politeness [“Your poem wasn’t bad!” (93)]. And while it
may be extreme to expect automated systems to understand ironic humor, they will likely need to
recognize more mundane forms of indirect speech.
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More broadly, RSA can characterize how the context surrounding communicative acts shapes
their meaning. For example, the statement “It’s warm today” has different consequences if said
during the spring as opposed to the winter (e.g., you would likely wear shorts in the first but not
the second case) (94). Computational cognitive models of how humans flexibly reason about a
shared context are a key part of understanding general statements about the world (95). Similarly,
the ability to establish contexts as communicative (e.g., intentionally getting someone’s attention
in order to convey some information) is an essential precursor to the types of cooperative commu-
nication interactions discussed above (96, 97). Formal models that combine RSA with sequential
decision-making and inference about whether partners have informative goals can provide a start-
ing point for implementing such flexible reasoning about communicative context in autonomous
systems (98, 99).

3.3. Applying Human Inverse Models to the Design of Autonomous Systems

Ideas from the computational cognitive science of mental state inference and communication have
already begun to inform research in human–robot interaction and reinforcement learning. This
showcases the potential for scaling up probabilistic models of cognition to complex, real-world
domains, while also revealing novel insights about communication and teaching. For example,
work in motion planning has led to robots capable of legible motion (9, 11), in which action se-
quences are modified to allow humans to more quickly and successfully understand a robot’s goals.
Related work by Ho et al. (10) showed that when learning from human demonstrations, inverse
reinforcement learning algorithms can benefit from being shown intentionally communicative ex-
pert behaviors (Figure 4). These modifications by both robots and humans are directly analogous
to the approach taken in the Bayesian pedagogy framework and demonstrate how consideration
of communicative goals can facilitate human–machine teaching, learning, and cooperation.

Insights from cognitive science can also inform the design of learning algorithms themselves.
For example, humans readily use rewards and punishments to modify the behavior of other ani-
mals and even other humans, and there is good reason to believe that similar principles of mental
state inference and communication apply to these interactions (101). In a series of experiments
with humans interacting with different learning algorithms, Ho et al. (102, 103) demonstrated
precisely this. Specifically, they found that people do not use rewards in a manner consistent with
the standard interpretation as a quantity to directly maximize, as is typically done in reinforcement
learning. Rather, they expect learners to reason about a teacher’s pedagogical goals and interpret
rewards as signaling information about whether an agent is headed in the right direction during
the learning process. Such findings help motivate the development of learning algorithms that
interpret rewards in more sophisticated ways and attempt to infer people’s teaching strategies and
goals (104, 105).

Along similar lines, MacGlashan et al. (106) found that the structure of a human teacher’s
feedback depends on an agent’s current stage of learning—a simple form of context. In a behavioral
study, the authors had human participants interact with either a completely naive agent or an
expert agent that knew the optimal path to a goal. When the naive agent took a suboptimal but
moderately good action, participants provided a high reward,while they gave the expert agent who
should have known better a low or even negative reward for taking the same action. The logic of
this strategy closely resembles that of the advantage function, which reflects the relative value of
each action in a state under the agent’s current policy (107). This insight motivated the design
of the Convergent Actor–Critic by Humans (COACH) algorithm, which treats human feedback
as an advantage signal. Subsequent work has also successfully applied COACH to training deep
learning agents (108).
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Figure 4

Learning from humans with communicative intent. Ho et al. (10) recruited human participants to perform grid navigation tasks that
required reaching a goal state while not losing points. Each column represents one trial. Row 1 represents the true underlying reward
function, where white tiles are 0 points, red tiles are −2 points, and the yellow goal tile is 10 points. Participants could not directly view
the reward values, but were shown colors on the grid (orange, purple, and blue) and told the value of each color (e.g., that orange and
purple are safe). Row 2 shows the visible layout of each grid, and each black line represents one participant’s trajectory on the task when
they were told only to do the task. Row 3 shows the same grid and trajectories for participants told to do the task as well as show the
reward function to an anonymous observer. Rows 3 and 4 show the reward weights estimated by maximum-likelihood inverse
reinforcement learning (MLIRL) (100) when given the doing versus showing demonstrations. Agents trained with the showing
demonstrations obtained better estimates of the underlying reward function than those trained with the doing demonstrations. Figure
adapted from Reference 10.

Additionally, researchers in control and robotics have developed unifying frameworks for
modeling cooperative interactions likely to be faced in human–robot applications. For instance,
cooperative inverse reinforcement learning (109) defines a general class of games from which
specific cooperative strategies can be derived (legible motion, requests for information, etc.)
based on a particular setup. Similarly, reward-rational learning (110) has been proposed as a
framework for characterizing different types of human–robot interaction problems (e.g., learning
from demonstrations, feedback, or examples) in terms of inference about human preferences
that may be implicit. Combining these general computational frameworks with insights from the
cognitive science of human decision-making will be an important direction for future research.

4. OPPORTUNITIES FOR FURTHER RESEARCH

The research we have reviewed is only a starting point for exploring potential applications of
cognitive science to engineering, robotics, and control. There are a number of exciting directions
based on the ideas we have covered. Here, we focus on three broad future directions.
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4.1. Inverse Resource Rationality

As we have noted, cognitive scientists have proposed that people reason about others as expected
utility maximizers. Additionally, we discussed how expected utility theory is inaccurate and how
resource rationality is a promising alternative framework. This raises the obvious possibility that
people understand that others have limited cognitive resources and therefore reason about them
not as pure utility maximizers but as resource-rational utility maximizers. Importantly, progress
here will depend on the continued development of plausible forward resource-rational models,
especially models of planning (e.g., 111, 112). Nonetheless, several lines of research have already
begun to explore inverse resource rationality. For example, research on perspective-taking and
communication has shown that people can flexibly reason about the division of cognitive labor
required for efficient communication (113). Additionally, recent work has demonstrated how hu-
mans can infer preferences by jointly reasoning about the time it takes to make a decision and
the decision itself (114), while other studies have shown how people reason about suboptimal or
inconsistent planning (115–117). These ideas have begun to be incorporated into inverse rein-
forcement learning settings (118). As with models based on inverse expected utility theory, un-
derstanding people’s inverse models of resource-rational processes will be essential for how they
interpret how machines make decisions and can also serve as inspiration for how machines inter-
pret and interact with humans.

4.2. Black Box Versus Theory-Driven Models for Inferring Intent

In our discussion of forward and inverse models, we encountered three different examples of how
machine learning tools can complement traditional psychological theory building. This included
work on how humans make risky choices, work on how humans make moral decisions, and work
on learning theory of mind concepts without hard-coding conceptual primitives or a principle of
rationality. These approaches have illustrated how large data sets can be combined with machine
learning tools to search the vast space of cognitive models in an efficient manner. However, they
also illustrated some of the limitations of a purely black box approach and the benefits of also
incorporating explicit, interpretable theories and structured prior knowledge. Thus, an important
direction for future work will be developing methods that seamlessly integrate the benefits of
each approach—on the one hand, the scalability of black box methods, and on the other hand, the
efficiency and interpretability of explicit psychological theories.

4.3. Schemas and Mechanisms for Human–Robot Interaction

Unlike settings involving a single agent, interactions between two or more agents are challeng-
ing to design because they are fundamentally ill defined: Each agent might have their own goals
and beliefs, which means there may not exist a single yardstick by which to measure whether the
engineering problem has been solved. This has occasionally prompted researchers to ask them-
selves, “If multi-agent learning is the answer, what is the question?” (119).

We propose that cognitive science is uniquely positioned to provide guidance on the question
that multiagent learning answers, in the form of schemas and mechanisms grounded in the types
of interactions that humans are adapted for. We have already encountered one example of this:
The interaction of a teacher and learner engaged in cooperative communication can serve as a
template for developing robots capable of legible action and value alignment (9, 109). Beyond
this, there are many other types of human interactions and sociocognitive mechanisms that we
have not discussed that could inspire future research. For example, humans form joint intentions
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to achieve shared goals, and this underlies our ability to cooperatively solve novel problems (120).
At a broader scale, human interactions are often shaped by norms, which can be understood as
shared behavioral tendencies that generalize across interactions with different agents in a pop-
ulation. Norms and normative cognition have been extensively studied in cognitive science and
psychology, and researchers have begun to explore these processes computationally (121). Finally,
an additional benefit of designing autonomous systems around how humans actually interact is the
potential for new insights into those very interactions, leading to further collaboration between
the cognitive sciences and engineering disciplines.

5. CONCLUSION

At the moment, there is no unified model of human cognition and decision-making that engineers
can draw on when designing their systems.Nonetheless, cognitive science has much to offer those
designing autonomous systems that interact with humans. In particular, cognitive science has a
rich trove of theories and methods for systematically studying how humans think, decide, and
interact with one another, and these discoveries are increasingly being couched in formal terms
that are familiar to researchers in robotics and control. Here, we have discussed several recent
frameworks and methodologies, such as the synthesis of black box and theory-driven methods,
resource-rational decision-making, cooperative cognition, and RSA theory.We then surveyed how
they have been applied to derive insights into the mechanisms and principles underlying people’s
forward and inversemodels of decision-making.As autonomous systems continue to becomemore
commonplace in people’s everyday lives, we expect engineers will also need to think systematically
about how the humans their systems encounter will make decisions. We hope this review can
provide clarity on the types of actionable insights and open questions that sit at the intersection
of cognitive science and control research.
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